德國HYDRO-BIOS公司——浮游生物多聯(lián)采樣網(wǎng)
浮游生物連續(xù)采樣網(wǎng)MultiNet?
Multi Plankton Sampler MultiNet?
水平操作狀態(tài) OceanLab軟件
MultiNet?浮游生物采樣網(wǎng)介紹:
MultiNet?浮游生物采樣網(wǎng)是一款浮游生物自動采樣器,浮游生物采樣網(wǎng)可以在連續(xù)的水層中進行水平采樣和垂直采樣。每個MultiNet?浮游生物采樣網(wǎng)安裝5只(9只)網(wǎng)袋。MultiNet?浮游生物采樣網(wǎng)開口面積:Mini型,0.125m2;Midi型,0.25m2,Maxi型,0.5m2;Mammoth型,1m2。MultiNet?浮游生物采樣網(wǎng)的整個系統(tǒng)由甲板控制單元、水下控制單元、不銹鋼框架、網(wǎng)衣、網(wǎng)底管等組成,5(9)只網(wǎng)袋通過拉鏈連接器連接在不銹鋼框架的帆布部分上。
每次可采5(9)個水層樣品 | 準備入水 | 高強度彈簧提供網(wǎng)口開閉的動力 | 鈦合金倉內(nèi)的高精度步進馬達和控制單元 |
MultiNet?浮游生物采樣網(wǎng)網(wǎng)袋的開啟與關(guān)閉是通過一個電池驅(qū)動的馬達單元激發(fā)的??刂凭W(wǎng)袋開關(guān)的指令是通過甲板控制單元和水下單元之間的單芯和多芯電纜傳輸?shù)?。我們可以提供各種網(wǎng)袋,適用于各種標準的和非標準的應(yīng)用場合。對于常規(guī)的水平采樣操作,我們推薦您使用孔徑為300微米(孔徑從100微米至500微米都是可選的)的網(wǎng)袋;對于垂直采樣來說,網(wǎng)孔大小從55微米到500微米都是適用的。
MultiNet?浮游生物采樣網(wǎng)的水下單元中集成一個壓力傳感器,深度和所有其他系統(tǒng)相關(guān)數(shù)據(jù)會一起在甲板控制單元的液晶顯示屏上顯示。水下單元上可以安裝兩個帶有角度補償功能的電子網(wǎng)口流量計:一個裝在水下單元的開口內(nèi),用于測定通過網(wǎng)口的水量;另一個裝在水下單元開口外,用于測定“堵塞效應(yīng)”。
在水平采樣操作中,MultiNet?浮游生物采樣網(wǎng)安裝了一個V-Fin深度抑制器;在垂直采樣操作時,一個不銹鋼支撐安裝在網(wǎng)底管固定器上,以便垂直采樣時,采樣網(wǎng)能夠安全迅速地降到所需的深度。
|
| |
工作中的MultiNet | 甲板單元 | 2010年南海作業(yè) |
MultiNet?浮游生物連續(xù)采樣網(wǎng)設(shè)備特點:
√水平操作和垂直操作
√容易操作
√雙向通訊
√標準深度3000米,可選工作深度6000米,11000米
√長距離FSK自動測量記錄傳導(dǎo)
√電量消耗低
√電池供電的水下單元
√EC-認證(CE)EN 50081-1,EN 50082-1
√操作溫度范圍-40℃ ~ +85℃
MultiNet?浮游生物連續(xù)采樣網(wǎng)的操作:
在初始位置的時候,MultiNet?浮游生物連續(xù)采樣網(wǎng)上的所有網(wǎng)袋是關(guān)閉的。水流可以很自由地流過浮游生物連續(xù)采樣網(wǎng)的框架,并允許采樣器以合適的速度降到期望的深度,然后按下甲板單元上的按鈕,可以使第1個網(wǎng)袋打開,當操作結(jié)束時,可以通過第2個指令將其關(guān)閉。在第1個網(wǎng)袋關(guān)閉的同時,第2個網(wǎng)袋會接著打開,當甲板單元顯示激活的網(wǎng)袋號碼時,這些網(wǎng)袋會重復(fù)以上過程。在操作Mini型和Midi型MultiNet?浮游生物連續(xù)采樣網(wǎng)時,第5個網(wǎng)袋保持敞開狀態(tài),MultiNet?浮游生物連續(xù)采樣網(wǎng)會收集從期望深度到表層的浮游生物。在操作Maxi型和Mammoth型MultiNet?浮游生物連續(xù)采樣網(wǎng)時,第9個網(wǎng)袋可以在到達水面之前閉合。
MultiNet浮游生物連續(xù)采樣網(wǎng)入水姿態(tài) MultiNet浮游生物連續(xù)采樣網(wǎng)整裝待發(fā)
MultiNet?浮游生物連續(xù)采樣網(wǎng)與CT組件:
MultiNet?浮游生物連續(xù)采樣網(wǎng)與CT組件結(jié)合在一起,擁有一臺CTD(溫鹽深儀)的完整功能。CT組件由一個電導(dǎo)率傳感器,一個溫度傳感器和一塊附加電路板組成,它們集成在MultiNet?浮游生物連續(xù)采樣網(wǎng)的馬達驅(qū)動單元中。根據(jù)UNESCO公式,系統(tǒng)可以從獲得的CTD數(shù)據(jù),計算出鹽度、密度和聲速等指標。
MultiNet?浮游生物連續(xù)采樣網(wǎng)的額外選擇:
√各種參數(shù)的傳感器,如鹽度、溫度、葉綠素a、濁度、姿態(tài)傳感器等
√電池供電的手持終端,當在線操作沒有交流電供電時,用來代替甲板控制單元
√MultiNet?浮游生物連續(xù)采樣網(wǎng)有適用于6000米和11000米采樣的特殊型號
MultiNet?浮游生物連續(xù)采樣網(wǎng)細節(jié)展示:
MultiNet?浮游生物連續(xù)采樣網(wǎng)技術(shù)參數(shù):
浮游生物連續(xù)采樣網(wǎng)MultiNet傳感器技術(shù)參數(shù)
傳感器 | 范圍 | 精度 | 分辨率 | 耐壓水深 |
壓力 | 0-3000dbar (0-6000dbar可選) | ±0.1%FS | 0.002% FS | 6000米 |
溫度 | -2~+32℃ | ±0.005℃ | 0.0006℃ | 6000米 |
電導(dǎo)率 | 0-65mS/cm | ±0.01mS/cm | 0.0003mS/cm | 6000米 |
葉綠素a | 0-150μg/L | ±2%FS | 0.025μg/l | 6000米 |
濁度 | 0-650 FTU | ±2%FS | 0.1FTU | 6000米 |
四款浮游生物連續(xù)采樣網(wǎng)MultiNet?詳細技術(shù)參數(shù)對比表
小型Mini | 中型Midi | 大型Maxi | 猛犸象型Mammoth | |
水下單元: | ||||
尺寸: 寬*長*高 | 65*90*80cm | 80*90*95cm | 120*110*135cm | 150*120*160cm |
網(wǎng)開口 | 35.5*35.5cm | 50*50cm | 71*71cm | 100*100cm |
網(wǎng)袋 | 5個/160cm長 | 5個/250cm長 | 9個/365cm長 | 9個/550cm長 |
標準網(wǎng)孔 | 300μm | 300μm | 300μm | 300μm |
網(wǎng)底管 | 5個/直徑11cm | 5個/直徑11cm | 9個/直徑11cm | 9個/直徑11cm |
工作時系統(tǒng)總長度 | 470 cm | 560cm | 800cm | 1000cm |
工作深度 | 3000m/6000m/ 11000m | 3000m/6000m/ 11000m | 3000m/6000m/ 11000m | 3000m/6000m/ 11000m |
壓力傳感器 | 3000dbar±0.1%f.s. (其他范圍可選) | 3000dbar±0.1%f.s. (其他范圍可選) | 3000dbar±0.1%f.s. (其他范圍可選) | 3000dbar±0.1%f.s. (其他范圍可選) |
小型Mini | 中型Midi | 大型Maxi | 猛犸象型Mammoth | |
重量: | ||||
網(wǎng)框 | 75kg | 100kg | 260kg | 390kg |
不銹鋼支撐 | 30kg | 50kg | 70kg | 100kg |
V-Fin 深度抑制器 | 22Kg | 22Kg | 70Kg | 70Kg |
材質(zhì): | ||||
網(wǎng)框 | 不銹鋼 | 不銹鋼 | 不銹鋼 | 不銹鋼 |
馬達單元 和電池艙 | 鈦合金 | 鈦合金 | 鈦合金 | 鈦合金 |
網(wǎng)袋 | 聚酰胺 | 聚酰胺 | 聚酰胺 | 聚酰胺 |
網(wǎng)底管 | PVC | PVC | PVC | PVC |
V-Fin 深度抑制器 | 鋁 | 鋁 | 鋁 | 鋁 |
斷裂負載: | ||||
淺水工作(0-500m) | 約1500kg | 約2000kg | 約4000kg | 約8000kg |
深水工作(500-3000m) | 約5000kg | 約8000kg | 約12000kg | 約18000kg |
電氣連接參數(shù): | ||||
連接插頭 | SUBCONN BH 2 M | SUBCONN BH 2 M | SUBCONN BH 2 M | SUBCONN BH 2 M |
電纜反向插頭 | SUBCONN IL 2 F | SUBCONN IL 2 F | SUBCONN IL 2 F | SUBCONN IL 2 F |
電纜連接 | 單芯或多芯電纜 | 單芯或多芯電纜 | 單芯或多芯電纜 | 單芯或多芯電纜 |
電纜電阻(回路) | 1000Ω | 1000Ω | 1000Ω | 1000Ω |
甲板控制單元 | 通過按鈕控制網(wǎng)袋的閉合,顯示網(wǎng)袋序號,壓力,電池狀態(tài),通過網(wǎng)口的水的流量和流速等;帶LED背景光的液晶顯示器;與PC連接的RS232接口 | |||
電源: | ||||
水下單元 | 3節(jié)3V鋰電池供電 | 3節(jié)3V鋰電池供電 | 3節(jié)3V鋰電池供電 | 3節(jié)3V鋰電池供電 |
甲板控制單元 | 85-260V AC | 85-260V AC | 85-260V AC | 85-260V AC |
拖網(wǎng)速度(當網(wǎng)袋的孔徑為300μm時): | ||||
水平操作 | ≤4knots | ≤4knots | ≤4knots | ≤4knots |
垂直操作 | ≤1m/s | ≤1m/s | ≤1m/s | ≤1m/s |
資料下載:
德國HYDRO-BIOS公司浮游生物連續(xù)采樣網(wǎng)介紹.pdf
相關(guān)新聞鏈接:
水德多聯(lián)網(wǎng)和多管采泥器助力“實驗6”采樣任務(wù)
國外應(yīng)用代表文獻:
1.Anna Schukat, Lena Teuber, Wilhelm Hagen, Norbert Wasmund, Holger Auel,2013.Energetics and carbon budgets of dominant calanoid copepods in the northern Benguela upwelling system.Journal of Experimental Marine Biology and Ecology.442:1-9.
2.Silke Laakmann, Holger Auel, Marc Kochzius,2012.Evolution in the deep sea: Biological traits, ecology and phylogenetics of pelagic copepods.Molecular Phylogenetics and Evolution.65(2):535–546.
3.Jessica R. Frost, Anneke Denda, Clive J. Fox, Charles A. Jacoby, Rolf Koppelmann, Morten Holtegaard Nielsen, Marsh J. Youngbluth,2012.Distribution and trophic links of gelatinous zooplankton on Dogger Bank, North Sea.Marine Biology.159(2):239-253.
4.Cornelia Jaspers, Lene Friis M?ller, Thomas Ki?rboe,2011.Salinity Gradient of the Baltic Sea Limits the Reproduction and Population Expansion of the Newly Invaded Comb Jelly Mnemiopsis leidyi.PLoS One.6(8):e24065.
5.Nikolaj G. Andersen, Torkel Gissel Nielsen, Hans Henrik Jakobsen, Peter Munk, Lasse Riemann,2011.Distribution and production of plankton communities in the subtropical convergence zone of the Sargasso Sea. II. Protozooplankton and copepods.Marine Ecology. Progress series.426:71-86.
6.Silke Laakmann, Holger Auel,2010.Longitudinal and vertical trends in stable isotope signatures (δ13C and δ15N) of omnivorous and carnivorous copepods across the South Atlantic Ocean.Marine Biology.157(3):463-471.
7.JANNE E. S?REIDE, EVA LEU, J?RGEN BERGE, MARTIN GRAEVE, STIG FALK-PETERSEN,2010.Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic.Global Change Biology.16(11):3154–3163.
8.Vijayalakshmi R. Nair, R. Gireesh,2010.Biodiversity of chaetognaths of the Andaman Sea, Indian Ocean.Deep Sea Research Part II: Topical Studies in Oceanography.57(24–26):2135–2147.
9.C.R. Asha Devi, R. Jyothibabu, P. Sabu, Josia Jacob, H. Habeebrehman, M.P. Prabhakaran, K.J. Jayalakshmi, C.T. Achuthankutty,2010.Seasonal variations and trophic ecology of microzooplankton in the southeastern Arabian Sea.Continental Shelf Research.30(9):1070–1084.
10.Holger Auel, Werner Ekau,2009.Distribution and respiration of the high-latitude pelagic amphipod Themisto gaudichaudi in the Benguela Current in relation to upwelling intensity.Progress in Oceanography.83(1–4):237–241.
11.Silke Laakmann, Meike Stumpp, Holger Auel,2009.Vertical distribution and dietary preferences of deep-sea copepods (Euchaetidae and Aetideidae; Calanoida) in the vicinity of the Antarctic Polar Front.Polar Biology.32(5):679-689.
12.Anne Lebourges-Dhaussy, Janet Coetzee, Larry Hutchings, Gildas Roudaut and Cornelia Nieuwenhuys,2009.Zooplankton spatial distribution along the South African coast studied by multifrequency acoustics, and its relationships with environmental parameters and anchovy distribution.ICES Journal of Marine Science.66(6):1055-1062.
13.Olli Urpanen, Timo J. Marjom?ki, Markku Viljanen, Hannu Huuskonen, Juha Karjalainen,2009.Population size estimation of larval coregonids in large lakes: Stratified sampling design with a simple prediction model for vertical distribution.Fisheries Research.96(1):109–117.
14.Silke Laakmann, Marc Kochzius, Holger Auel,2009.Ecological niches of Arctic deep-sea copepods: Vertical partitioning, dietary preferences and different trophic levels minimize inter-specific competition.Deep Sea Research Part I: Oceanographic Research Papers.56(5):741–756.
15.Veronica Fernandes, N. Ramaiah,2009.Mesozooplankton community in the Bay of Bengal (India): spatial variability during the summer monsoon.Aquatic Ecology.43(4):951-963.
16.Marina E. Sabatini,2008.Life history trends of copepods Drepanopus forcipatus (Clausocalanidae) and Calanus australis (Calanidae) in the southern Patagonian shelf (SW Atlantic).Journal of Plankton Research.30(9):981-996.
17.Katarzyna Blachowiak-Samolyk, Slawek Kwasniewski, Haakon Hop and Stig Falk-Petersen,2008.Magnitude of mesozooplankton variability: a case study from the Marginal Ice Zone of the Barents Sea in spring.Journal of Plankton Research.30(3):311-323.
18.H. Habeebrehman, M.P. Prabhakaran, Josia Jacob, P. Sabu, K.J. Jayalakshmi, C.T. Achuthankutty, C. Revichandran,2008.Variability in biological responses influenced by upwelling events in the Eastern Arabian Sea.Journal of Marine Systems.74(1–2):545–560.
19.Martin O. Macnaughton, Jonas Thormar, J?rgen Berge,2007.Sympagic amphipods in the Arctic pack ice: redescriptions of Eusirus holmii Hansen, 1887 and Pleusymtes karstensi (Barnard, 1959).Polar Biology.30(8):1013-1025.
20.Holger Auel, Hans M. Verheye,2007.Hypoxia tolerance in the copepod Calanoides carinatus and the effect of an intermediate oxygen minimum layer on copepod vertical distribution in the northern Benguela Current upwelling system and the Angola–Benguela Front.Journal of Experimental Marine Biology and Ecology.352(1):234–243.
21."Katarzyn Blachowiak-Samolyk, Slawek Kwasniewski, Katherine Richardson,
Katarzyna Dmoch, Edmond Hansen, Haakon Hop, Stig Falk-Petersen,
Lone Thybo Mouritsen",2006.Arctic zooplankton do not perform diel vertical migration (DVM) during periods of midnight sun.Marine Ecology Progress series.308:101–116.
22.Heino Fock & Hans-Christian John,2006.Fish larval patterns across the Reykjanes Ridge.Marine Biology Research.2(3):191-199.
23.FOSSHEIM Maria, MENG ZHOU, TANDE Kurt S., PEDERSEN Ole-Petter, YIWU ZHU, EDVARDSEN Are,2005.Interactions between biological and environmental structures along the coast of northern Norway.Marine Ecology Progress series.300:147-158.
24.Brierley, Andrew S., Boyer, David C., Axelson, Bjorn Erik, Lynam, Christopher P., Sparks, Conrad A.J., Boyer, Helen, Gibbons, Mark J.,2005.Towards the acoustic estimation of jellyfish abundance.Marine Ecology Progress Series.295: 105-111.
25.Gustavo Alvarez Colombo, Hermes Mianzan and Adrian Madirolas,2003.Acoustic characterization of gelatinous plankton aggregations: four case studies from the Argentine continental shelf.Journal of Marine Science.60(3):650-657.
26.Holger Auel, Iris Werner,2003.Feeding, respiration and life history of the hyperiid amphipod Themisto libellula in the Arctic marginal ice zone of the Greenland Sea.Journal of Experimental Marine Biology and Ecology.296(2):183–197.
27.Elisabeth Halvorsen, Kurt S. Tande, Are Edvardsen, Dag Slagstad, Ole Petter Pedersen,2003.Habitat selection of overwintering Calanus finmarchicus in the NE Norwegian Sea and shelf waters off Northern Norway in 2000–02.Fisheries Oceanography.12(4-5):339–351.
28.S. Sundby, A. J. Boyd, L. Hutchings, M. J. O'Toole, K. Thorisson & A. Thorsen,2001.Interaction between Cape hake spawning and the circulation in the northern Benguela upwelling ecosystem.South African Journal of Marine Science.23(1):317-336.
29.H.G. Fransz, S.R. Gonzalez,1997.Latitudinal metazoan plankton zones in the antarctic circumpolar current along 6°W during austral spring 1992.Deep Sea Research Part II: Topical Studies in Oceanography.44(1–2):395–414.
30.Jürgen Lenz, Alvaro Morales, Judith Gunkel,1993.Mesozooplankton standing stock during the North Atlantic spring bloom study in 1989 and its potential grazing pressure on phytoplankton: a comparison between low, medium and high latitudes.Deep Sea Research Part II: Topical Studies in Oceanography.40(1–2):559–572.
更多關(guān)鍵詞:浮游生物多聯(lián)采樣網(wǎng),浮游生物分層拖網(wǎng),浮游生物網(wǎng),深海采樣網(wǎng)